
SGX ENCLAVE PROGRAMMING:
COMMON MISTAKES

AN IMPLEMENTATION OF WKMS OBSERVED IN THE FIELD

@W S, WIRESHRINK@GMAIL.COM

MICHAEL ATLAS

1

Each organization has its own dialect of English. That’s why there are 2 probably not
too much understandable abbreviations on this slide: SGX and WKM. SGX is a
software guard extensions of Intel and by extension I mean instruction set extension.
WKM is an opposite to the BKM (or best known methods) and means, of course ,
worst known methods.
Today I going to talk about mistakes that can be done (and usually done) with SGX
enclave programming – and going to present a training target for hacking SGX
enclaved software.

1

INTRODUCTION

• Michael Atlas

• working ~10 years as a security researcher at various places, such as Intel, NDS and Cisco @Haifa,

Israel

• @w s at reverse engineering stack exchange

• Legal

• The opinions expressed in this presentation and on the following slides are solely those of the presenter

and not necessarily those of any of the presenters current, previous, or future employers ☺

• This is not SGX advertisement presentation (there are a lot of others, better then this one)

• I respect the signed NDAs. Please expect “I can not answer this question” as an answer for really

interesting things.

2

Let me introduce myself,
Michael Atlas

working ~10 years as a security researcher at various places, such as Intel,
NDS and Cisco @Haifa, Israel
@w s at reverse engineering stack exchange

And I have to state some things loud and clear before we starting
Legal

The opinions expressed in this presentation and on the following slides are
solely those of the presenter and not necessarily those of any of the
presenters current, previous, or future employers ☺
This is not SGX advertisement presentation (there are a lot of others, better
then this one)
I respect the signed NDAs. Please expect “I can not answer this question” as
an answer for really interesting things.

2

AGENDA AND SPECIAL NOTE ON THE TIME
ALLOCATION

• Damn Vulnerable approach

• SGX Enclave and threat model change

• PSW (platform software), SDK and the structure of applications with SGX enclave

• DVSE itself, its code quality and finding hardware

• List of bad practices (WKMs)

• DVSE Demo

• Tools and better practices (BKMs)

3

Note that SGX is a bit complicated and some of this talk will be dedicated to
describing SGX itself and its SDK. There are a lot of good people that made a lot of
presentations about it.
In addition I’ll try to avoid spoilers in the details of specific WKMs implementation.
Here is an agenda: I going to speak about the following
-remind Damn Vulnerable approach
- What is SGX Enclave, how it changes standard threat model and why I think that it is
good
-What is PSW (platform software), SDK and what is a standard structure the structure
of applications with SGX enclave built with this SDK
-DVSE itself, its code quality and finding hardware
-List of bad practices (WKMs)
-DVSE Demo
-Tools and better practices (BKMs)

3

DAMN VULNERABLE APPROACH

• Damn vulnerable * is a * which is damn vulnerable

• iOS app, Android app, Linux, Windows, web-app, database server, etc. – in

almost any “alive” software “ecosystem”

• Standard practice to provide “legitimate” (IANAL, check with your lawyer

first) training target and raise security awareness

• Shows “damned if you do” instead of “blessed if you do” practices

intentionally

4

Some of you probably remember what is “damn vulnerable” exercises

-Damn vulnerable * is a * which is damn vulnerable
-iOS app, Android app, Linux, Windows, web-app, database server, etc. – in almost
any “alive” software “ecosystem”
-Standard practice to provide “legitimate” (IANAL, check with your lawyer first)
training target and raise security awareness
-Shows “damned if you do” instead of “blessed if you do” practices intentionally

4

I MADE A TRAINING TARGET (DVSE)

• Things like this are usually called “damn vulnerable”

• All this presentation is intended to provide you a context around its usage

5

I made a thing like this for SGX enclaves
All this presentation is intended also to provide you a context around its usage
And of course I call this training target a damn vulnerable SGX enclave according to
this old respectable tradition

5

WHAT IS SGX ENCLAVE

• SGX (software guard extensions) is a new Intel ‘s TEE and instruction set extension

• 6th Generation Intel® Core™ Processor or newer

• Main goal: to protects selected code and data from disclosure or modification. The

CPU-hardened SGX “enclaves” are protected areas of execution that increase

security even on compromised platforms

• SGX Enclave is distributed in .dll/.so form

6

- SGX is new Intel ‘s TEE and instruction set extension (2 opcodes enclu and encls,
with so-called leaves numbers of which are passed in RAX register),
- Exists in 6th Generation Intel® Core™ Processor or newer (SkyLake and CabyLake for

now)
- Main goal: “to protects selected code and data from disclosure or modification. The

CPU-hardened SGX “enclaves” are protected areas of execution that increase security
even on compromised platforms.”
- SGX enclave is a blob of code, packed as .so/.dll with well defined interfaces which
can be called from the usual application as functions

In short: SGX enclave is an isolated, signed, and attestable piece of code with well
defined interfaces that allows to the programmer to execute it safely without of
intervention of other parties, even most privileged - such as BIOS, OS, hypervisor,
SMM and Management Engine.

6

WHY IS IT INTERESTING ?

• I like it

• The first solution I know about where “security anchor” code is not “privileged”

• I reviewed enough enclaves to make some (hopefully representative)

conclusions about common mistakes

7

First of all … I like it.
This is the first solution I know about where “security anchor” code is not
“privileged”, which is definitely right thing

And I think I reviewed enough SGX enclaves during my work @Intel to be able to
make some (hopefully representative) conclusions about common mistakes

7

SGX: ATTACK SURFACE REDUCTION

• The attack surface of the application is

reduced to defined enclave interfaces

• Privileged code can not access enclave’s

internal state

• Enclave is signed and attestable

• Enclave has access to unique

platform+enclave specific crypto keys

(and nobody else)

8

One of the main ideas behind this invention is to reduce the attack surface of the
application, which means creating some kind of code and data enclave which can not
be accessed by privileged software with some additional security properties. If the
software is designed properly - the attack surface of the application’s security anchor
is reduced to defined enclave interfaces(instead of all the privileged software and all
the application itself).
Privileged code can not access enclave’s internal state – and other enclaves too.
Enclave is signed and attestable
In addition SGX enclave is able to use unique cryptographic keys derived from
processor specific fuses, enclave measurements and some other things (which means
that the same enclave will not be able to decrypt the data encrypted on other
system).

8

ARCHITECTURAL PROPERTIES OF SGX ENCLAVES

• Altered enclave will not load

• Loading only debug and whitelisted enclave

• Only enclave itself can read or write enclave’s memory (if not in debug mode)

• Neither SMM, neither bios, neither kernel, nor other enclave

• MEE is used

• Evicted memory is encrypted

• Enclave has ring 3 privileges

• Enclave is able to prove its authenticity

9

These enclaves have the following architectural properties:

Altered enclave will not load (It is signed, loading fails, cryptographically protected by
hardware)
Loading only debug and whitelisted enclave (licensing enclave, the part of mandatory
platform woftware, will decline others)
Nobody except enclave itself can read or write enclave’s memory if the enclave is not
defined as debug (debugging instructions will work otherwise)

Neither SMM, neither bios, neither kernel, nor other enclave
Enclave’s memory is encrypted (MEE also known as Memory Encryption Engine is
used in order to avoid HW attacks)
Evicted memory is also encrypted and protected from replay attack
There is a usual design pattern – more secure code should be more privileged (and all
negative numbered rings are the proof for that)
SGX designers made completely different decision - Enclave itself has ring 3
privileges, so it allegedly can not harm anyone else
Enclave is able to prove its authenticity to authorized parties

9

ARCHITECTURAL PROPERTIES– SOME
CONSEQUENCES

• SGX enclave is specially designed for keeping secrets safe

• SGX enclave is a perfect place to hide and isolate interesting activity

• SGX enclave can be very small

• Smaller SGX enclave has significantly smaller attack surface

• SGX enclave is a part of an ordinary application

• SGX enclave is a code, written by programmers. They are making mistakes.

10

These properties define some consequences:

SGX enclave is specially designed for keeping secrets safe
SGX enclave is a perfect place to hide and isolate interesting activity – and you
can define word “interesting” as you like

SGX enclave can be very small
Smaller SGX enclave has significantly smaller attack surface

SGX enclave is a part of an ordinary application
SGX enclave is a code, written by programmers. They are making mistakes. I
know that my English is bad, but I really mean that they are writing code now
and making mistakes just now, in this very moment (at least in countries were
Sunday is a working day) – and it is never ending process and it will continue
until something will not disappear: SGX or programmers ☺ .

10

THREAT MODEL DIFFERENCES

• It is assumed that the attacker already has system-wide capabilities

• Which is the end-point and the ultimate goal of “standard” attacks

• Static analysis is back for release enclaves (no memory read/write – no

debugging – no traces – no modern fuzzing techniques)

• Attack should be focused on secrets and enclave capabilities

• Just because by definition the hacker already has all the rest

11

Having such a thing in the system makes some shifts in “standard” threat model.
SGX enclaves as a feature were designed to allow correct and secure enclave
functioning in worst conditions, even if the system is completely compromised by the
attacker.
It is assumed that the attacker already has system-wide capabilities

Which is the end-point and the ultimate goal of “standard” attacks
And it still holds the ground even in this case: attacks on enclaves are starting
after the most ultimate standard goal of the attacker is achieved

No memory access means actually no debugging. No debugging in offensive context
means no smart fuzzing, which means that at least for SGX release enclaves
pure static analysis is back.

It also changes the focus of the attack: really successful attacks on SGX enclaves will
be mostly focused on extracting of enclaves secrets and reusing enclaves capabilities
rather then code execution -

Just because by definition the hacker already has all the rest

11

SPECIAL NOTE ON SIDE CHANNEL ATTACKS (EXACT
QUOTE FROM ENCLAVE WRITERS GUIDE)

• The Intel® architecture aims to provide protection against software side channel attacks at the cache line granularity. The

Intel SGX architecture does nothing to improve this position.

• In general, enclave operations that require an OCall, such as thread synchronization, I/O, etc., are exposed to the untrusted

domain. If using an OCall would allow an attacker to gain insight into enclave secrets, then there would be a security concern.

This scenario would be classified as a sidechannel attack, and it would be up to the ISV to design the enclave in a way that

prevents the leaking of side-channel information. An attacker with access to the platform can see what pages are being

executed or accessed. This side-channel vulnerability can be mitigated by aligning specific code and data blocks to exist

entirely within a single page.

• More important, the application enclave should use an appropriate crypto implementation that is side-channel attack

resistant inside the enclave if side-channel attacks are a concern.

• NOTE: The Intel Advanced Encryption Standard New Instructions (AES-NI) Set is designed to be constant time to prevent

timing based side channel attacks.

12

As a part of changes in threat model – timing attacks are getting more and more
important and this is a very special case – but you are more then welcome to explore
this direction, it works.
There are some articles published recently about it . I keeping this long and exact
quote from the SGX enclave writers guide here for those that can not hear me and
will be reading the presentation. Please don’t rush into reading it, the essence
follows:

12

SIDE CHANNEL ATTACK ISSUE BOTTOM LINE

• The Intel® architecture aims to provide protection against software side

channel attacks at the cache line granularity. The Intel SGX architecture

does nothing to improve this position.

• More important, the application enclave should use an appropriate crypto

implementation that is side-channel attack resistant inside the enclave if

side-channel attacks are a concern.

13

Here it is –

The Intel® architecture aims to provide protection against software side channel
attacks at the cache line granularity. The Intel SGX architecture does nothing to
improve this position.

More important, the application enclave should use an appropriate crypto
implementation that is side-channel attack resistant inside the enclave if side-
channel attacks are a concern.

Let me translate it from English to Understandable: it is on responsibility of the
programmer to care about it.

13

ATTACKER: REQUIRED SKILLZ

• SkillZ

• Code review, both in source and binary level

• Reverse engineering

• Fuzzing

• Crypto, at least basic knowledge (in AES GCM/ECB/CBC/etc.)

14

New task requires new/good old set of tools: this brings us to a bit different skillset –
running fuzzer and !exploitable in WinDbg is definitely not enough.
The following skillz are required for SGX enclaves reviewing:

Code review, both in source and binary level (meaning – old good reverse
engineering), will be much more productive.
Dumb fuzzing, and
Attacker will also need at least some basic knowledge in cryptography because AES
GCM is used for default sealing.

14

TARGET SPECIFICS

• Enclaves are small

• And can be read

• Encrypted enclave is still fuzz-able

• Most interesting things will be hidden in the enclave

• Which makes it the first priority target

15

The following things really make all thi situation different:
If the enclave is good – it is really small, smaller enclave means smaller attack
surface

On the other side, the fact of enclave existence, reveals the most
interesting target and (none accessible) location of the secrets
immediately, all the “interesting” things are located at the same place,
the enclave itself.
And you have no debugging capabilities inside for release enclaves.

In a standard case it is readable, and you literally can read it all.
However, enclave itself can be encrypted.
But even in this case the enclave driving application is reverse-
engineer-able and blind fuzzing is still possible.

So, again, static analysis is back. Seriously.
So most interesting things will be hidden in the enclave

Which makes the enclave the first priority target

15

SPECIAL NOTE ON HARDWARE AVAILABILITY OR
CHOOSE HW WISELY

• Best way to check for processor support : look at

http://ark.intel.com/Search/FeatureFilter?productType=processors&Software

GuardExtensions=true

• https://github.com/ayeks/SGX-hardware

• SGX may be turned off or not supported by BIOS

• Official requirement: “Required Hardware: 6th generation Intel® Core™

processor (or later) based platform with Intel SGX-enabled BIOS support”

16

Now we know what enclave is, and what properties it has.
Let’s explore what is required for playing with it.
First of all it appears that having processor with SGX support is not enough … (btw, by
this link you’ll find the full list)

http://ark.intel.com/Search/FeatureFilter?productType=processors&SoftwareGuardE
xtensions=true

Lars Richter (@ayeks) maintains a list of SGX enabled hardware, the link is here. This
link is very useful because
“SGX is turned off by default and must enabled via
MSR.IA32_Feature_Control.SGX_Enable. Only the BIOS can make changes to the
IA32_Feature_Control.”
For example Intel SGX SDK requires as the following for the hardware:
“Required Hardware: 6th generation Intel® Core™ processor (or later) based platform
with Intel SGX-enabled BIOS support”
I spent a week for finding a laptop (this one, Dell Inspiron 15 5578 2-in-1) that really
supports it.
Just try to imagine – you calling a support of specific hardware vendor and asking a

16

question – does this specific system supports SGX on BIOS level.
They obviously don’t understand the question, and trying to clarify it: and they don’t
ask what is SGX, they ask what is BIOS ☺

16

SDK AND PSW(PLATFORM SOFTWARE)

• PSW (platform software) is out of scope

• Predefined enclaves (quoting, licensing, provisioning)

• Driver

• aesm_service is intended to orchestrate all of them

17

IN addition to hardware and BIOS we need some software.
Playing with SGX requires SDK and PSW which is actually out of scope of this talk …
PSW (platform software) – it is kind of runtime environment which contains driver,
architectural enclaves and the aesm_service

Architectural enclaves (quoting, licensing and provisioning) are mostly related
to enclave licensing and attestation features.

SDK is actually for building the enclave and the application
aesm_service is intended to orchestrate all of them

*** PSW is kind of runtime environment,
*** SDK is for compiling

17

BUILDING AND INSTALLING ENVIRONMENT -
WINDOWS

• Installation guide

• Revision: 1.7 (Intel® SGX SDK version: 1.7.100.35600)

• Visual Studio 2013/2015

• Debugger is included for debug mode enclaves

• Enclave simulation exists

• Required Hardware: ”6th generation Intel® Core™ processor (or later) based

platform with Intel SGX-enabled BIOS support”

18

We have the environment to play with it both in Linux and Windows.
Here is windows environment definition:

Installation guide
Revision: 1.7 (Intel® SGX SDK version: 1.7.100.35600)
Visual Studio 2013/2015

Visual Studio 2013/2015 (mentioned as visual studio 2015 professional
in the docs, I am using community edition and it works: the SDK files also has VS
2013 related files)
Debugger is included for debug mode enclaves
Enclave simulation exists
Required Hardware: ”6th generation Intel® Core™ processor (or later) based platform
with Intel SGX-enabled BIOS support”

18

BUILDING AND INSTALLING ENVIRONMENT - LINUX

• Installation guide

• Revision: 1.8 (Linux 1.8 Open Source)

• Eclipse with the plugin

• Debugger is included for debug mode enclaves (sgx_gdb)

• Required Hardware: ”6th generation Intel® Core™ processor (or later)

based platform with Intel SGX-enabled BIOS support”

19

And here is a Linux environment definition, please remember to install both PSW and
SDK on both targets.

Installation guide
Revision: 1.8 (Linux 1.8 Open Source)
Eclipse with the plugin
Debugger is included for debug mode enclaves (sgx_gdb utility)
Required Hardware: ”6th generation Intel® Core™ processor (or later) based platform
with Intel SGX-enabled BIOS support”

19

SGX ENCLAVE EDL FILE SYNTAX AND
CAPABILITIES

• Best example:

SampleEnclave in the

SDK

• Docs

• IDL like idea

enclave {

trusted {

/* define ECALLs here. */

public int ecall_update_epg ();

public int ecall_get_epg_page(int number, size_t strsize, [out, size=strsize] void* page);

public int ecall_get_movie_chunk(size_t movie_id, size_t chunk_id, size_t chunk_size, [out, size=chunk_size] void* chunk);

public int ecall_purge_filesystem();

};

untrusted {

/* define OCALLs here. */

void* ocall_file_open ([in, out,string] char* file_name, [in,out,string] char* format);

int ocall_file_close([user_check]void* handle); //size_t is used foir passing a file pointer

size_t ocall_sealed_file_read_page([user_check]void* handle, size_t offset, [in,out]unsigned char data[1024]);

size_t ocall_sealed_file_write_page([user_check]void *handle, size_t offset, [in,out]unsigned char data[1024]);

int ocall_socket_connect ([in, string]char *url, unsigned int port);

int ocall_socket_send ([in, out, size=data_size] void* data,size_t data_size);

int ocall_socket_receive ([in, out, size=data_size] void* data,size_t data_size);

int ocall_socket_shutdown ();

};

}

20

Code that can not interact with user and/or other code is invisible, inaudible,
unobservable, can not do anything and can be considered non-existing.
Enclave, as it was said before, should have well defined interfaces and here is the way
in which these interfaces are defined:
EDL file (it looks like that edl means enclave definition language).
The idea behind it is very similar to the COM interfaces definitions: there are some
definition of the call inside and outside of an enclave.
Generally it is a rich language – there are imports, complex data types, etc.

20

SGX ENCLAVE EDL FILE SYNTAX AND
CAPABILITIES

• Best example:

SampleEnclave in the

SDK

• Docs

• IDL like idea

enclave {

trusted {

/* define ECALLs here. */

public int ecall_update_epg ();

public int ecall_get_epg_page(int number, size_t strsize, [out, size=strsize] void* page);

public int ecall_get_movie_chunk(size_t movie_id, size_t chunk_id, size_t chunk_size, [out, size=chunk_size] void* chunk);

public int ecall_purge_filesystem();

};

untrusted {

/* define OCALLs here. */

void* ocall_file_open ([in, out,string] char* file_name, [in,out,string] char* format);

int ocall_file_close([user_check]void* handle); //size_t is used foir passing a file pointer

size_t ocall_sealed_file_read_page([user_check]void* handle, size_t offset, [in,out]unsigned char data[1024]);

size_t ocall_sealed_file_write_page([user_check]void *handle, size_t offset, [in,out]unsigned char data[1024]);

int ocall_socket_connect ([in, string]char *url, unsigned int port);

int ocall_socket_send ([in, out, size=data_size] void* data,size_t data_size);

int ocall_socket_receive ([in, out, size=data_size] void* data,size_t data_size);

int ocall_socket_shutdown ();

};

}

21

In this picture trusted section means calls into the enclave, named ECALLS

21

SGX ENCLAVE EDL FILE SYNTAX AND
CAPABILITIES

• Best example:

SampleEnclave in the

SDK

• Docs

• IDL like idea

enclave {

trusted {

/* define ECALLs here. */

public int ecall_update_epg ();

public int ecall_get_epg_page(int number, size_t strsize, [out, size=strsize] void* page);

public int ecall_get_movie_chunk(size_t movie_id, size_t chunk_id, size_t chunk_size, [out, size=chunk_size] void* chunk);

public int ecall_purge_filesystem();

};

untrusted {

/* define OCALLs here. */

void* ocall_file_open ([in, out,string] char* file_name, [in,out,string] char* format);

int ocall_file_close([user_check]void* handle); //size_t is used foir passing a file pointer

size_t ocall_sealed_file_read_page([user_check]void* handle, size_t offset, [in,out]unsigned char data[1024]);

size_t ocall_sealed_file_write_page([user_check]void *handle, size_t offset, [in,out]unsigned char data[1024]);

int ocall_socket_connect ([in, string]char *url, unsigned int port);

int ocall_socket_send ([in, out, size=data_size] void* data,size_t data_size);

int ocall_socket_receive ([in, out, size=data_size] void* data,size_t data_size);

int ocall_socket_shutdown ();

};

}

22

And untrusted – calls out of the enclave to untrusted environment (OCALLS)
As you remember the enclave works with ring 3 privileges and can not execute
system calls:
Ocalls are intended to provide this service, but it requires leaving the enclave.

22

SGX ENCLAVE DEFINITION: EDL FILE AND EDGER8R
TOOL

• Edger8r tool creates the code stubs from the EDL

• Good fuzzing helper

23

The EDL file is not compiled directly, there is some utility that generates a code from
it in order to push some data inside an enclave and get some data out of it.
This is done with tool called edger8r – it generates code in C to solve this problem.
This code is added automatically into the project (both enclave and enclave driving
application for trusted and untrusted parts correspondingly) by visual studio SGX
plugin.

By the way, it is a great tool for building enclave fuzzing harness once you have or can
deduce EDLs file content correctly(just import it to the project from the enclave or
elsewhere in Visual Studio)

23

SGX ENCLAVE CALL:
PARTS

• Trusted vs untrusted parts

User

application
PSW code

Trusted

generated code
Enclave

Untrusted

generated code

U_generatedUser app PSW dlls/so’s T-generated Enclave

UNTRUSRED

24

Let’s talk about how these calls are implemented: we have the following parts: user
application, untrusted generated code, Platform software code, trusted generated
code, and trusted enclave code.
Blocks looking similar to red are untrusted and running in standard hackable mode.
Blocks looking similar to green are trusted and running in enclave mode.

24

SGX ENCLAVE
CALL:TRANSITIONS

• ECALL

U_generatedUser app PSW dlls/so’s T-generated Enclave

Call Generated stub

Pack the data

Unpack and call enclave

function

Return to generated

Unpack data if any

return

Go to enclave mode

Pack result and go back

25

UNTRUSRED

Let’s try to imagine an e-call and understand how it works from
trusted/untrusted/generated/written manually code.
Here is how all transitions between the code parts looks like …

25

SGX ENCLAVE
CALL:TRANSITIONS

U_generatedUser app PSW dlls/so’s T-generated Enclave

Generated stub

Pack the data

Call enclave function

Return to generated

Unpack data if any

return

Call the generated stub

Call the generated stub

Call the OCALL

Return from ocall

Pack the data

Ret to enclave function

Call EENTER:call generated stub

Pack args and eexit

Call EENTER:call generated stub

EExit

26

• ECALL+

OCALL

UNTRUSRED

Let’s add OCALL to this picture: (call to untrusted service such as open file, which
should require transfer from ring3 to ring 0), it makes things a bit more complicated

26

HOW IT LOOKS LIKE IN IDA AND IN THE
GENERATED SOURCE FILES

• [Show in visual studio and in IDA]

27

And now let’s look how all these transitions are look like in the code.

Show the call from user application, generated code, enclu in Visual studio
Show cross-references to ecall in IDA

27

THE LINK TO “DVSE” AND TO THE APP

• You have the source

• Debug enclave is less worthy target

• If you cannot sign the enclave – try to break in pre-release mode

• https://github.com/wireshrink/RECONMTL-2017

28

Now we have seen how it should work, let’s start with overviewing the promised
DVSE
First of all – the link is here (mention if it is public for now):

You can (and should) build it and debug it as you can and as platform allows
Debugging flag is a part of the key derivation material – which makes release build
much more interesting target
If you want to use this in release environment you have to sign it yourself on behalf of
yourself or your organization
Unfortunately I can not distribute signed enclave because of licensing issues.

28

SPECIAL NOTE ON “DVSE” CODE QUALITY

• All mistakes deliberately inserted to “DVSE” were observed in real life in

“finished” or “near to production” quality code more than one time

• To my best knowledge these mistakes are fixed

• Some of these mistakes deliberately are made a bit easier to exploit

• Probably there are other not intentional mistakes

29

There are some statements I have to state loud and clear, but this time not for the
legal gods sake:

All mistakes I deliberately inserted to “DVSE” were observed in real life in the code
which was marked as “finished” or “near to production” quality

To my best knowledge all mistakes I am going to speak about were fixed in
original enclaves (but I saw these mistakes enough times to make conclusion
that these mistakes are common)
Some of these mistakes deliberately are made a bit easier to exploit
It doesn't mean, however, that there are no other mistakes I made not
intentionally

In order to write the DVSE I had to resurrect the bad programmer buried inside of
myself since I stopped to work as such.
It was very hard. In addition it was very interesting psychological experience.
I even had an idea to publish it on behalf of imaginary programmer with complicated
name taken from Russian literature such as Васисуалий Лоханкин – but abandoned
it.

29

DVSE AND TARGET APPLICATION PROPERTIES

• Available on Windows

• Planned to be available on Linux

• Made vulnerable INTENTIONALLY

• Very much sample and stack overflow driven

• DON’T USE THIS CODE IN PRODUCTION

30

So, what is it? On what exactly are we training ?
This is windows application I planning to port on Linux sometimes,
Intentionally vulnerable, partially copylefted from stack-overflow and samples,
And of course, completely not usable in production.
I beg you. Please don’t shoot yourself in the leg, you were warned.

30

DRM INSIDE: CLIENT

• Client (C/C++, in scope, QT5 based, with “DVSE”)

• Functionality

• “Time limited” VOD

• “Secure” media storage

• “Secure” local media library

31

The application consists of client, server, and the evil DRM.
This evil DRM includes:

“Time limited” VOD
“Secure” media storage
“Secure” local library

31

DRM INSIDE: CLIENT

• Assumed to be protected with obfuscation and anti-debugging in the real life target

• Defeating of which is definitely not the point - you have the original source code

• Not used here: it is an exercise

• Assumed to be protected with remote attestation

• Not used here: it is an exercise

• The goal is not to hack the application, but to hack the badly written SGX enclave

• GOAL: to create your own application that decrypts movies encrypted by the enclave

32

In the real life this kind of applications will be protected with obfuscation, remote
attestation and other tricks in untrusted part. I decided to leave application
protection out of scope –
Defeating it is not the point.
The main goal of this exercise is to create another application that will get all the
enclave’s secrets and will be able to decrypt the movies.

32

DRM INSIDE: SERVER

• Server (out of scope, feel free to dig and use for debugging)

• Very simple thing that gives all files encrypted according to configuration

• SSL with self-signed certificates (sha1 of the certificate is checked inside the enclave)

• I added some public domain cartoons as a media examples

33

Server gives up all the files if asked correctly, and defeating it is also not the point:
Server is out of scope too.
It is

Very simple python script thing that gives all files encrypted according to
configuration
SSL with self-signed certificates (sha1 of the certificate is checked inside the
enclave)
I added some public domain cartoons as a media examples (At least I
downloaded these cartoons from the internet site with this claim)

33

DRM INSIDE – HOW TO USE

• Install QT5, SGX SDK and PSW

• Clone and compile the code

• Write me if you have problems (wireshrink@gmail.com)

• Run server on a local machine(media is already inside, public domain

cartoons)

• Run client on the local machine or in simulator

• Use, hack, enjoy

34

So here you can see a general usage instructions: install components, compile the
code including the enclave, run server and client on the local machine as wrote in
readme.md.

In short – use, hack, enjoy.

34

NOTE ON THE BALANCE BETWEEN SPOILERS AND
THE PRESENTATION

• WKMs (worst known methods, as opposed to BKM)

• Not too much spoilers ahead, but the general spirit of the things is kept

35

Then question is – what mistakes are there. Now we going to explore the promised
WKMs I observed on real–life enclaves.

System programming provides a lot of possibilities to shoot yourself in the leg.
SGX enclave programming is not an exception, and we going to explore these
possibilities just now.
We speaking about:

WKMs (worst known methods, as opposed to BKM)
Please do not expect too much implementation spoilers ahead, but

the general spirit of the things is kept

35

WKMS TO BE CAUGHT DURING DESIGN REVIEW

• Bad design

• No attestation

• Possibility to exclude the enclave from the process

• Trusting that enclave will not run with other application

• Bad crypto

• Key material and AES GCM IV exhaustion with sealing

• Not constant time crypto and other sensitive algorithms

• Writing crypto code all alone (call your crypto PhD to avoid this)

36

I divided these WKMs according to the development phase they should be
discovered.
So, design review should avoid – surprise – bad design :)

36

WKMS TO BE CAUGHT DURING DESIGN REVIEW

• Bad random

• Custom random numbers generation

• Trusting the untrusted components

• They are called untrusted for a reason

• Enclave as a confused deputy

• Decryption APIs available for free

37

Please verify every single line of the code, bad random is very hard to catch.
I understand the noble idea “we can not audit rdrand instruction and then we’ll use it
only for random number seeding”
After taking this unfortunate decision the responsibility on this is yours alone.

Decrypt secret using the hidden key shouldn’t be an ECALL if enclave doesn’t check
outside environment, which is almost impossible to do reliably

37

WKMS TO BE CAUGHT DURING CODE AND BUILD
REVIEW

• Misconfiguration of the enclave

• Debug enclave sent to to production

• Well known vulnerabilities such as not checked inputs or buffer

overflows(enclave will not make your code secure if it has mistakes inside)

• A lot of examples, such as TOCTOU on input buffer, not checked inputs and so on.

• Leaving secrets unattended, even inside of the enclave

38

Code and build review can reveal the following things

Misconfiguration of the enclave
Debug enclave sent to production

Well known vulnerabilities such as not checked inputs or buffer overflows(enclave
will not make your code secure if it has mistakes inside)

A lot of examples, such as TOCTOU on input buffer, not checked inputs and so
on.

Leaving secrets unattended, even inside of the enclave
Use memset_s to clear secrets
Clear secrets as soon as possible after usage

38

WKMS TO BE CAUGHT DURING CODE AND BUILD
REVIEW

• Accessing not secure memory from the enclave

• It is still untrusted

• Timing attacks (because of algorithmic flaws)

• strcmp like checks.

• Using secrets as a source of a conditional expressions is always a problem

• Inventing a wheel instead of using SDK

39

More things that should be caught there:

Accessing not secure memory from the enclave
It is still untrusted

Timing attacks (because of algorithmic flaws)
strcmp like checks.
Using secrets as a source of a conditional expressions is always a problem

Inventing a wheel instead of using SDK
Please don’t implement sealing, multithreading, crypto, and other things
existing in the SDK yourself.
I’d seen some of custom implementations of this idea, none of them made
sense, and all of them ended badly.

39

WKMS TO BE CAUGHT BY FUZZING AND CODE
REVIEW

• Well known vulnerabilities such as not checked inputs or buffer

overflows(enclave will not make your code secure if it has mistakes inside)

• Accessing not secure memory from the enclave

• Don’t write outside of enclave yourself.

• Note: most of really interesting things almost can not be found dynamically

40

And fuzzing, in the end.
Please note that most interesting things almost can not be found dynamically.
During the conference somebody mentioned “Bad design guard” – so wee really need
it ☺

40

DEMO

• Let’s find secret exfiltration by mistake

• I’d be glad to help you to find all the rest

• Walkthrough will be published as soon as possible

41

So, here is the demo – let’s exfiltrate something from the enclave.
All the rest you’ll have to either find yourself, or contact me for the solution or wait
until it will be published.

Intended vulnerability – not checked index of the read buffer which leads to the data
exfiltration (which was stored in the enclave for all the enclave life time)
This vulnerability is easy to find manually, and I’ll show it to you.
1 – Run server, show config files(epg and coupons)
2 – Run client
3 – Mention coupons. Add library folder and init user
4 – Show the EPG
5 – Run the free cartoon and stop

6 – Show where EPG is got in Visual Studio (app) and IDA (enclave)
7 – Read through the code of the DVSE
8 – Show the memcpy
9 – Show the enclave test
10 – Show (show shortcuts: we using for the same EDL and even the same class for
ECALLS, but the OCALLS are changed). Show generated files for Untrusted part.

41

11 - Run it
12 – Show found coupons
13 – Show certificate details

Note: revealing this vulnerability is easy, but it illustrates the following WKMs:

1 – leaving secrets unattended and thus very bad design (secrets should be cleared
immediately after usage, just for defense in depth – and enclave didn’t help us in
anything). Here you have a lot of secrets.
2 – Standard vulnerabilities (and it can be found by fuzzing)

This vulnerability probably looks a bit artificial, but I have a really good reason for
showing it:

1 – As an example of how small and harmless issue can undermine all the security
model

There is a proverb in Russian, “don’t put all the eggs to the same
basket”, with very clear meaning: don’t place all of your valuables at the same place.

In the boundaries of this analogy any kind of secure enclave, and it
doesn’t matter how exactly it is implemented, is a basket with eggs.

Once you drop it – you break everything.
2 – I had seen similar things in real life enclaves. They were a bit more complicated,
but it is an exercise, after all.

41

PREVENTION IN THE FIELD

• Static code analysis tools such as Klocwork

• Manual architecture, code, crypto, and build review (reminder – code is

usually small)

• Fuzzing the enclave (with a kind help of edger8r tool, both from OCALL and

ECALL sides)

42

Let’s speak for a moment about prevention of these bugs.
Surprisingly automatic code analysis tools – such as Klocwork - may give a good result
if used with nightly builds every day.
Manual review of all possible things gives best results – but with the results we have
a problem:
- the review should be conducted by very much qualified people
- It is still probabilistic process, and something will always be overlooked

As for fuzzing -
Nothing new here except of old good and dumb enclave fuzzing – there are no tools
that allow to use something more complicated.
The only hope here is that good enclave is small – and missing information can be
obtained by code review.

Again “Bad design guard” to rescue … We definitely need it here.
In addition I think that symbolic execution may be interesting in this context, but I
didn’t use it myself for this purpose.

42

BTW, INTEL OPENED A BUG BOUNTY PROGRAM ☺

• https://security-center.intel.com/BugBountyProgram.aspx

• All the PSW is a critical part of the infrastructure

• Bugs which are found sooner are easier to cure

43

If you are reading these presenter notes – thank you very much ☺

43

FUTURE WORK (ORDER DOESN’T MATTER)

• Porting DVSE to Linux

• Publishing walkthrough and exploits

• Automatic deduction of the enclave ECALLs/OCALLs from binary analysis

• Abstract interpretation and/or symbolic execution for fuzzing (again, enclave

is small)

44

44

ENCLAVE – USEFUL LINKS

• Where to start : https://software.intel.com/en-us/sgx

• ISCA 2015 SGX tutorial: https://software.intel.com/sites/default/files/332680-002.pdf

• Good external analysis: http://eprint.iacr.org/2016/086.pdf

• For HW - SDM is the best: Vol. 3D : http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-manual-325462.pdf

• Linux SDK and platform software

• https://01.org/intel-softwareguard-extensions

• https://github.com/01org/linux-sgx

• Enclave writers guide https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-

Writers-Guide.pdf

45

Some useful links for the concerned fellow citizens

45

SPECIAL THANKS

• Lars Richter @ayeks.de

• My colleagues – if you hear this – it was an honor to work with you and I

wouldn’t find all these bugs alone.

• Recon organizers. It’s an honor to present here.

46

Special thanks : as in list.

46

QUESTIONS

• Please ?

47

47

THANKS FOR WATCHING ☺

• Feel free to contact me

• wireshrink@gmail.com

• @wireshrink (I’m not writing there, but you can send PM, and news about DVSE will

appear there)

48

48

BACKUP

49

49

NOTE ON SGX SEALING KEY DERIVATION MATERIAL

• + Fuses, of course

(CR_SEAL_FUSES in

terms of SDM, the

screenshot is from

there)

• Note Sealing key – it

is enclave or signer

specific

50

One more note for history – key derivation material. This table actually shows that
each enclave will have its own key, depending on a lot of parameters including debug
state, enclave content or enclave certificate and fuzez

50

WHY CAN’T I SIGN IT MYSELF

• https://software.intel.com/en-us/license/intel-software-guard-extensions-licensee-guide

“ In addition, Licensees should:

Observe industry secure coding best practices for software development to avoid vulnerabilities (such practices might include a secure software

development framework, coding standards, data input validation, least access possible, secure logging, and so on).

Address and fix significant security vulnerabilities within a reasonable time, or within a time frame established under existing disclosure

arrangements between Intel and the Licensee, after becoming aware of the vulnerability.

Ensure that the licensed application installer, or the operating environment in which the application resides, includes the most current Platform

Software (PSW) Installer for Intel SGX.

Ensure that end-users receive PSW updates via application update mechanism, or via the operating environment in which the application resides.

Observe best industry practices to: (i) not write malware, spyware or other nuisance software; (ii) not write poorly designed software that

contains significant security vulnerabilities or that fails to deliver its security promise.

Construct Licensed Software Applications to enable complete removal on end user request, including removal of any sealed data.”

51

51

NOTE ON INVOLVED CRYPTO

• AES GCM is used for sealing data

• EPID and other things are out of scope

52

If we are not speaking about local/remote attestation – AES GCM is the crypto
algorithm used in sealing the secrets by default (as in Linux SDK source code).
EPID and other things (a lot of them) are used for the attestation, licensing and
quoting: all of them are out of scope for this talk

52

SGX INSTRUCTIONS
• ENCLU and ENCLS instructions and their leafs(RAX is a leaf number)

• Loading/creating

• [ENCLS] EINIT, EADD, ECREATE, EREMOVE, EEXTEND

• Maintaining

• [ENCLS]ELDB, ELDU, EPA, EWB,ETRACK, EMODT, EMODPR, EAUG

• [ENCLU]EMODPE, EACCEPT, EACCEPTCOPY (SGX2 included)

• Transitions

• [ENCLU]EENTER, EEXIT, ERESUME

• Debug

• [ENCLS]EDBGREAD, EDBGWRITE

• Crypto

• [ENCLU]EGETKEY, EREPORT

53

Yes, we have extensions for extensions ☺

53

